
Preserving Host Independent Emulation Speed

Peter Jakubčo1, Liberios Vokorokos1

1 Faculty of Electrical Engineering and Informatics, Technical university of Košice, Letná 9,

042 00 Košice, Slovakia

{peter.jakubco, liberios.vokorokos}@tuke.sk

Abstract. Degree of emulator's ability to imitate emulated machine is defined

by its accuracy. EmuStudio platform, used mainly for educational purposes,

tries to be an accurate emulator. The most widely implemented accuracy level is

preservation of emulated computer speed. Modification of host machine

hardware affects the emulation speed and therefore it is necessary to guard if

the emulation speed match the requirements.

Keywords: emulation, sequential algorithm, emulation accuracy

1 Introduction – emulator accuracy

The emuStudio emulation platform is software developed at Department of

Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical university of Košice. The design aim is to develop an emulator able to

emulate arbitrary computer configurations that are based on von Neumann

architecture conception [1].

The main characteristic of each emulator is its accuracy that defines the scope how

the emulator behaves like real machine. There exist several accuracy levels. The most

important are:

a) accuracy of data and states internal representation,

b) and accuracy of timing (preserving instruction cycles time).

The effort of accuracy achievement on the one level can decrease accuracy
achievement on the other level. For example, skipping some specific details of
emulated hardware can decrease the emulation quality itself. On the other hand,
replacement of certain real hardware elements by proper abstraction, often improves
the emulation quality. Therefore it is essential to decide what accuracy level is needed
(depending on emulator’s nature), and how can be achieved.

2 Basic emulator’s structure

Main activity of running emulation is to perform exact sequence of well-defined steps

repetitively. It meets with the work of real computer, because the activity of a real

computer (mainly instruction execution) can be divided into repetitious steps

sequence.

The emulator's work is represented by an algorithm (Fig. 1), where a scheduler is

implemented. The scheduler allots host processor’s time to particular emulated

components, including emulated processor, in the exactly defined order.

The scheduler allots certain time interval to each emulated component in the same

sequence. In the allotted time the component can perform any activity. The time

interval is estimated, and depends on required emulation speed.

When the time interval expires, time synchronization must be performed. It is not

guaranteed whether the components will be running in the exact boundaries of the

allotted time. Sometimes their emulation cannot be stopped right after time expiration

– that depends on the nature of emulated component.

Usually the time interval is estimated for single emulation iteration for all

components together. At the end of the iteration the time synchronization is

performed. Time interval in the algorithm in Fig. 1 is divided into two parts:

 numberOfCycles – maximum number of processor machine cycles that the
processor can execute for single emulation iteration;

 maxTime – maximum common time interval in what all devices can work
within single emulation iteration.

Besides of central processing unit (CPU) and devices emulation, external interrupts

are generated, causing the setting of corresponding state variables of CPU emulator,

along with the need of certain conditions satisfaction. The interrupts are generated by

peripheral devices. Their handling is realized effectively only when the interrupt

generating is located outside the processor execution (outside of the executeCPU

procedure).

3 Emulation of central processing unit

The core of every single computer emulator is processor, or CPU (Central Processing

Unit).

The emuStudio platform does not limit the programmer in the use of emulation

technique. However, till the present time each implemented processor uses only

running = true;

(numberOfCycles, maxTime) = initTimeSyn();

while (running) {

 running = executeCPU(numberOfCycles);

 ints = generateInterrupts();

 emulateDevices(ints, maxTime);

 (numberOfCycles, maxTime) = timeSyn();

}

Fig. 1: Basic emulator algorithm (sequential).

interpretation. The skeleton of the processor emulation algorithm, using interpretation

as emulation technique, has the form shown in the Fig. 2.

Devices emulation algorithm is using two methods – readIO and writeIO. Their task is

to identify a device connected to processor’s port (defined in the operand of an input-

output instruction) and call the input/output of the device by a way that is defined in

the communication model. Quick response of such two methods is very important.

4 Keeping the required emulation speed

One requirement of a reliable emulation (and the satisfaction of timing accuracy) is to

stabilize the speed of the emulated computer and to synchronize it with the required

speed. Mostly the demand is to reach the real speed of a real computer that is going to

be emulated, but this is not a must.

Relative speed of computer emulation where a program is running is defined

as:

 , (1)

where:

 – average frequency of the emulated processor that is executing the

program ()

 – average throughput of other emulated components ()

 – throughput of emulated program – number of significant changes

(treatment of inputs and outputs) in the program for single time unit ()

cycles = 0;

while (cycles < numberOfCycles) {

 opcode = fetch_opcode(PC);

 PC = PC + 1;

 switch (opcode) {

 case MOV:

 ...

 cycles = cycles + MOV_CYCLES;

 break;

 ...

 case IN:

 port = fetch_operand(PC);

 PC = PC + 1;

 A = readIO(port);

 cycles = cycles + IN_CYCLES;

 break;

 case OUT:

 port = fetch_operand(PC);

 PC = PC + 1;

 writeIO(port, A);

 cycles = cycles + OUT_CYCLES;

 break;

 ...

}

Fig.2: Algorithm of CPU interpretation (executeCPU procedure)

Relative speed of the real computer is defined analogically:

, (2)

where:

 – average frequency of the real processor executing the program
()

 – average throughput of the other real components ()

 – throughput of the program – number of significant changes
(treatment of inputs and outputs) in the program in the single time unit
()

If the speed is known, then the speed represents required speed ratio.

The requirement of speed synchronization is fulfilled, if the following equation holds:

 (3)

However such state is optimal and mostly it cannot be sustained for longer time

period. If:

 , (4)

then the emulation is slowed-down, if compared with the required speed. Emulation

speeding-up is not always possible to perform (it is always easier decreasing the

performance as increasing). If:

 , (5)

the emulation is speeded-up compared to demanded speed, and it is necessary to slow

down it in a certain way.

The principle of speed synchronization with required speed (in a case of (4) and

(5)) is to regulate the speed.

Slowed-down emulation (condition (4)) can be regulated (increased) by the

limitation of devices emulation quality (e.g. by reduction of the number of frames per

second (fps) of graphic card, or by reducing the sound quality, etc.). The aim is to

reduce emulation time of the other devices and to save a time for processor emulation.

Speeded-up emulation (condition (5)), in the contrast, can be easily decreased by

reducing the number of instructions execution by the emulated processor. The

"missed time" (freed processor’s emulation time) then can be utilized either by

increasing the emulation quality of other components, or by waiting in the idleness.

EmuStudio platform solves only condition (5), because of the following reasons:

1. increasing the emulation speed is difficult and sometimes impossible,
2. in the present time the platform implements only older 8-bit computers, so the

performance of present host machines is sufficient for their emulation.

Basic condition for successful speed regulation of the emulated processor is

acquaintance of the number of machine cycles (CPI, Cycles Per Instruction) [4],

needed for each instruction execution. Sometimes the number cannot be determined

easily, because it depends on the instruction complexity.

Next important information is that for each period of a processor clock frequency,

n machine cycles of an instruction are performed:

 (6)

Let's suppose that . Then a time needed for i
th

 instruction realization equals to:

 (7)

It would be possible to regulate the speed of each individual instruction

particularly, by what the most precise regulation could be achieved (sampling and

regulation frequency would be high), but, on the other hand, the burden of regulation

itself could slow down the emulation rapidly.

Therefore, in the emuStudio platform, the speed is regulated only after several

instructions execution that is performed without the regulation. It is supposed that the

host computer is much more powerful than required performance of emulated

processor. Such approach, the "letting out" of non-regulated group of instructions,

tries to overrun required speed. On the one hand, this saves some time, but on the

other hand, the instructions are performed faster than they should perform. Anyway,

in the overrunned time the regulation is performed. This time can be also useful in the

other way than for regulation: it balances missed time lost in peripheral devices

emulation, when they had run longer time than they should have.

Processor emulation algorithm with time synchronization is shown in Fig. 3. The

algorithm uses following operations:

 now_time – finds out actual time (e.g. in ms)
 wait – waits a certain time given as parameter (e.g. in ms)

The algorithm begins by the definition of a fixed time interval (timeSlice), for which

the group of non-regulated instructions should be performed. This value is designated

empirically.

Then it is computed how many machine cycles would fit into the time interval.

This parameter is called numberOfCycles, and has been used also in the previous

algorithms.

Final computation of the parameter comes from a certain computations sequence. The

goal is to achieve equality (3), therefore:

 (8)

 (9)

and so:

 (10)

Let's define speed ratio of the running program as:

 (11)

Then if the emulated program is faster than it would be on the real computer,

holds. If it is slower, holds. If the programs run at the same speed (what is the

goal), holds.

The emuStudio emulation platform takes into account both time for instructions

execution and the time for devices emulation, in the single processor emulation

iteration cycle. The devices emulation is realized immediately after input-output

instruction execution. Therefore throughput of devices can be ignored, or added to

emulated processor frequency:

 (12)

 (13)

From now, there are considered only processor frequencies. Then the following holds:

running = true;

while (running) {

 startTime = now_time();

 cycles = 0;

 while ((cycles < numberOfCycles)) {

 opcode = fetch_opcode(PC);

 PC = PC + 1;

 i_cycles = execute(opcode);

 cycles = cycles + i_cycles;

 }

 // time synchronization

 endTime = now_time();

 timeLen = endTime - startTime;

 if (timeLen < timeSlice) {

 // time correction =

 // emulation is too fast

 wait(timeSlice - timeLen);

 }

}

Fig. 3: Algorithm of processor emulation with the speed

synchronization

 (14)

 (15)

 (16)

 (17)

where is a period of emulated CPU, by which a single machine cycle of an

instruction is performed. If we introduce computed numberOfCycles parameter into (17),

we get:

 (18)

Then a single batch of instructions on real computer, that is emulated, takes:

 (19)

While emulating target computer on a host computer that runs at independent speed,

the value of timeSlice parameter depends on host computer parameters.

The timeSlice parameter is designated empirically. Too low value can lead to

significant emulation slow-down due to speed regulation. In the contrast, too big

value would make the emulation "pulsation". It means that after each performed

emulation iteration, the emulation would freeze in the idleness for significantly long

time. There exists an empiric formula for timeSlice parameter computation:

 (20)

By expanding (18):

 (21)

 (22)

Parameters (required emulation frequency, or emulated processor frequency) and

 (program speed ratio) are given. For speed preservation it must hold and

therefore final formula is:

 (23)

Seeing that for every frequency period a single machine cycle is performed, the

parameter depends on required frequency, too.

Before and after each non-regulated instructions group emulation execution the

starting time startTime and final time endTime are measured out.

By the difference of these times, we get the duration of the emulation iteration

(timeLen). If it is compared with the timeSlice parameter, we find out how the real

processor frequency is synchronized with required frequency (or speed):

 (24)

 (25)

 (26)

 (27)

If the emulation is speeded up (real processor frequency is bigger than required), there

inequality (27) holds, and the algorithm in Fig. 3 solves that problem by waiting in the

idleness (by the wait operation).

5 Conclusion

Emulation speed synchronization plays an important role. The correctness of many

programs execution depends on exact timing of instruction cycles, executed on the

processor. There exist two reasons for the effort of the achievement of the exact

emulation timing.

At first, programmers are trying to utilize all processor performance. Older

computers’ programmers had to take into account how and when they could access to

the devices (and perform wait loops). The goal was to minimize the wait loops

duration. Certain device could be accessed only in an exact moment (e.g. video

memory and video registers were accessible only if the picture was not drawing to the

screen right now) and then it had been possible to compute how long time was needed

for waiting.

Second, there exist several levels of emulator accuracy, and for the emulation of

various hardware can be given various requirements. The more accuracy is required,

the more consideration has to be taken into account for speed synchronization.

Acknowledgments. This work was supported by the Slovak Research and

Development Agency under the contract No. APVV 0073-07 and VEGA grant project

No.1/0026/10 “Modeling and simulation of security attacks in distributed computing

environments and networks”.

References

1. VON NEUMANN J. 1945. First Draft of a Report on the EDVAC. [online]

Available from: <http://www.virtualtravelog.net/entries/2003-08-TheFirstDraft.pdf>.

2. JAKUBČO P., ŠIMOŇÁK S. 2009. emuStudio – a plugin based emulation platform. In: Journal
of Information, Control and Management Systems, ISSN 1336-1716, 2009, vol.7, no.1, pp.
K33–46

3. JELŠINA M. 2002. Architectures of computer systems: principles, structural organization,
function (In Slovak). Košice: Elfa, 2002, 2. issue. 567p. ISBN 80-89066-40-2

4. VOKOROKOS, L. at all.: 2008. Digital Computer Principles (in Slovak). Elfa, s.r.o., 322p.
ISBN 978-80-8086-075-2

5. JAKUBČO P, DOMITER M. 2010. Standardization of computer emulation, SAMI 2010
Proceedings, 8th International Symposium on Applied Machine Intelligence and Informatics,
Herľany, Slovensko, 28.-30.1.2010, b.m., 2010, IEEE Catalog Number CFP0908E-CDR, pp.
147-151, ISBN 978-1-4244-3802-0

6. Arjan Tijms. 2000. “Binary translation: Classification of emulators” [online] Available from:
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.807&rep=rep1&type=pdf>.

7. BARRIO, V. M. 2001. Study of the techniques for emulation programming, Computer Science
Engenieering, Facultat d'informàtica de Barcelona , Universitat Politècnica de Catalunya.
[online]. Available from: <http://www.scribd.com/doc/94546/Study-of-the-techniques-for-
emulation-programming-by-Victor-Moya-del-Barrio>.

