TECHNICKA UNIVERZITA V KOSICIACH

FAKULTA ELEKTROTECHNIKY A INFORMATIKY

emuStudio

Peter Jakubco

Priloha B
Diplomova praca
Kosice, 2009

Systémova prirucka

©Copyright 2008-2009, Peter Jakubco
This document is an unseparable part of the diploma thesis.

Thesis supervisor and consultant: ing. Slavomir Simoridk, PhD.

For more information please read license agreement.

Contents

1 Package plugins 1
1.1 Imterfaces 2
1.1.1 INTERFACEIPlugin 2
1.1.1.1 DECLARATION oottt e 2

1112 METHODS o ottt et 2

1.1.2 INTERFACEIContext 4
1121 DECLARATION oottt e e 4

1.1.22 METHODS ottt 4

1.1.3 INTERFACE ISettingsHandler 5
1131 DECLARATION oottt e 5

1.1.32 METHODS oo i ittt et e 5

2 Package plugins.memory 7
21 Interfaces 8
211 INTERFACEIMemory 8
2111 DECLARATION . .« vt v e et it e e e e e e e e e e e e 8

2112 METHODSttt it 8

2.1.2 INTERFACE IMemoryContext 10
2121 DECLARATION . . .« .t v v it et e e e e e e e e e e e e 10

2122 METHODS ittt 10

2.1.3 INTERFACE IMemoryContext.IMemListener 12

2131 DECLARATION . . .« v v vttt et e e e e e e e e e e e e 12

2132 METHODS ittt 12

3 Package plugins.cpu 13
31 Interfaces 14
3.1.1 INTERFACEICPU et it 14
3.1.1.1 DECLARATION . . . ¢ v v v vt e e e et e e e e e e e e e e e e e 14

3.1.1.2 FIELDS o e e e e 14

3.1.2

3.1.3

3.14

3.1.1.3 METHODS . . . o v ot i e e e e e e e e e e

INTERFACEICPUContext
3.1.21 DECLARATION v v e et e e e e e e e e e e e e e
3.1.22 METHODS . . . o o oo e e e e e e e e e e e e
INTERFACE ICPUContext.ICPUListener
3.1.3.1 DECLARATION v v v e e e e e e e e e e e e e e e
3.1.32 METHODS . . . o o i o i i e e e e e e e e e e e e
INTERFACE IDebugColumn
3141 DECLARATION . . . & v v v v e e e e e e e e e e e e e e e e
3142 METHODS v it i i e e e e e e e e e e e e e e e e

4 Package plugins.compiler

41 Interfaces e
411 INTERFACEICompiler
4.1.1.1 DECLARATION . & v v v v v e e e e e e e e e e e e e e e e e e
4.1.1.2 METHODS ¢ o i i e e e e e e e e e e e e e e e e

41.2 INTERFACEILexer @ . i it it
4.1.21 DECLARATION . . . v v v v e e e e e e e e e e e e e e e e e e
4122 METHODS o i i e e e e e e e e e e e e e e e e

4.1.3 INTERFACE IMessageReporter
4.1.31 DECLARATION . .« v v v v e e e e e e e e e e e e e e e e e e e
4132 FIELDS o e e e e e e
4.1.3.3 METHODS i i i e e e e e e e e e e e e e e e e

414 INTERFACEIToken
4141 DECLARATION . & v v v v v e e e e e e e e e e e e e e e e e e e
4142 FIELDS . . o v v v o e e e e e e e e e
4143 METHODS o i i e e e e e e e e e e e e e e e e

5 Package runtime

5.1 ClasSes . . v v v i e e e e e
511 Crass StaticDialogs o o L
51.1.1 DECLARATION o v e e e e e e e e e e e e e e e e

51.1.2 CONSTRUCTORS . . .« o v v vt e it e e et e e e e e e e

5.1.1.3 METHODS . . . v o o i v e e e e e e e e e e e e e

6 Package plugins.device

6.1 Interfaces

6.1.1

30
31
31
31
31
31

6.1.1.2 METHODS v v ittt e e e e e e e e e 34
6.1.2 INTERFACE IDeviceContext 35
6.1.2.1 DECLARATION . . .« ¢ o v vt e i e e e e e e e e e e e e e 35
6.1.2.2 METHODSt i it e e e e e e e e e e 36

Package plugins

Package Contents Page
Interfaces
TPIUGIN . . 2
Root interface for all plugins. Defines description, version, name and copyright
information.
IContext. 4
Parent interface for all contexts.
ISettingsHandler........ 5

Interface for all plugins, it perform methods for reading /storing settings.

2 Package plugins

1.1 Interfaces

1.1.1 INTERFACE IPlugin

Root interface for all plugins, defines description, version, name and copyright information.

1.1.1.1 DECLARATION

public interface IPlugin

1.1.1.2 METHODS

o destroy
public void destroy()

— Usage
* This method is called immediately after user closes the emulator. It means, that
after return from this method instance of the plugin will be destroyed. It should
contain some clean-up or destroy code for GUISs, stop timers, threads, etc.

o getCopyright
public String getCopyright()

— Usage
* Get legal copyright of the plugin.
- Returns - legal copyright

o getDescription
public String getDescription ()

— Usage
* Get short description of the plugin. It should not be used as a manual :-)
— Returns - short description of the plugin

e getHash
public long getHash()

— Usage
* The “hash” will be assigned to a plugin in their run-time, at once by its
constructor. The plugins will identify themselves using given hash.

Interfaces

— Returns - hash that was assigned to the plugin

o getTitle
public String getTitle ()

— Usage
* Get name of the plugin. This name is only “marketing”-name, it has no
relevance for identifying the plugin. This name is shown in "Preview
Configuration” in main module, and if the plugin is device, also in “devices”
section in panel “emulator” in the main module.
- Returns - name of the plugin

o getVersion
public String getVersion()

— Usage
* Get version of the plugin. String is returned, so version can be in arbitrary
format. This version should not to be used for identifying the plugin. Better for
this purpose is checking plugin’s context version and ID.

- Returns - version of the plugin

e reset
public void reset()
— Usage
* Perform a reset of this plugin. Reset process depends on the type of the plugin.

e showSettings
public void showSettings ()

- Usage
* Every plugin should have its own GUI for settings manipulation. This method
invokes it.

4 Package plugins

1.1.2 INTERFACE IContext

Parent interface for all contexts.

1.1.2.1 DECLARATION

public interface IContext

1.1.2.2 METHODS

e getHash
public String getHash ()

— Usage

* Hash string (doesn’t matter how long) is computed from names of all methods.
Hash is computed from a string that consists of alphabetically sorted names of
all context methods with their return type and parameter types.
A single method is written in the following way: "type
name(parameter_typel,parameter_type2,...)”
Methods are then sorted alphabetically in ascending, and joined together with
separator ”;”, like this: “method1;method2;...”
For example: “String getID();void setRAM(int,int)”
Then the string has to be hashed by md5 hash.
The hash is used for identifying the context by other plugins.

— Returns - hash of all context methods

o getID
public String getID()

— Usage
* Return unique ID of this context. This can be any string identifying concrete
context. Usually it is related with kind of context (e.g. "cpu8080”,”mitsSIO-2",...)
. Other plugins can identify the context by recognizing of its ID.

— Returns - ID of this context.

Interfaces 5

1.1.3 INTERFACE ISettingsHandler

Interface for all plugins, it perform methods for reading/storing settings. It is implemented by the main
module and plugins obtain its object by an parameter in initialization process.

1.1.3.1 DECLARATION

public interface ISettingsHandler

1.1.3.2 METHODS

o readSetting
public String readSetting(long pluginHash, java.lang.String
settingName)

— Usage
* Read specified setting from configuration file. Setting can be arbitrary. It uses
configuration file that user chosen after start of the emulator.
— Parameters

* pluginHash - hash of a plugin
* settingName - name of wanted setting (without spaces)

— Returns - setting if it exists (as a String), or null if not

e removeSetting
public void removeSetting (long pluginHash, java.lang.String
settingName)

— Usage
* Remove specified setting to from a configuration file. Be careful, setting can be
arbitrary. It uses configuration file that user chosen after start of the emulator.
— Parameters

* pluginHash - hash of a plugin
* settingName - name of wanted setting (without spaces) to be removed

o writeSetting
public void writeSetting (long pluginHash, java.lang.String
settingName, java.lang.String val)

— Usage

Package plugins

* Write specified setting to a configuration file. Setting can be arbitrary. It uses
configuration file that user has chosen after start of the emulator.
— Parameters
* pluginHash - hash of a plugin
* settingName - name of wanted setting (without spaces) to be written
* val - value of the setting (has to be String type)

Package plugins.memory

Package Contents Page
Interfaces
IMemOTY . ..o 8
This is the main interface that memory plugin should implement.
IMemoryContext. 10
Interface provides a context for operating memory.
IMemoryContext.IMemListener................ 12

The listener interface for receiving memory events.

8 Package plugins.memory

2.1 Interfaces

2.1.1 INTERFACE IMemory

This is the main interface that memory plugin should implement.

2.1.1.1 DECLARATION

public interface IMemory

implements plugins.IPlugin

2.1.1.2 METHODS

o getContext
public IMemoryContext getContext()

— Usage
* Gets memory context. Via memory context devices and CPU performs access to
memory cells. If memory supports some special techniques (e.g. banking,
segmentation, paging, etc.), the context should be extended by new one, that’s
interface will be public to all interested plugnis or CPUs.

- Returns - memory context object

e getProgramStart
public int getProgramStart()

— Usage
* Gets program’s start address. The start address is set invoking memory’s
method IMemory.setProgramStart () by main module when compiler
finishes compilation process of a program and if the compiler know the starting
address. This address is used by main module for CPU reset process.

— Returns - program’s start address in memory

o getSize
public int getSize ()

— Usage
* Gets size of memory. If memory uses some techniques as banking, real size of
the memory is not computed. It is only returned a value set in architecture
configuration.

Interfaces 9

— Returns - basic size of the memory

e initialize
public boolean initialize (int size, plugins.ISettingsHandler
sHandler)

— Usage
* Perform initialization process of memory. The memory should physically create
the memory - e.g. as an array or something similar. Memory can’t use CPU nor
devices. It is accessed BY them.

— Parameters

* size - size of the memory, set in architecture configuration
* sHandler - settings handler object. Memory can use this for

accessing/storing /removing its settings.
— Returns - true if initialization process was successful, false otherwise

e setProgramStart
public void setProgramStart(int address)

— Usage
* Sets program start address. This method is called by main module when
compiler finishes compilation process and return known start address of
compiled program. This start address is then used by CPU, in reset operation -
PC (program counter, or something similar) should be set to this address,
accessible via IMemoryContext .getProgramStart () method.
— Parameters

* address - starting memory position (address) of a program

o showGUI
public void showGUI()

— Usage
* Show GUI of a memory. Every memory plugin should have a GUI, but it is not a
duty.

10 Package plugins.memory

2.1.2 INTERFACE IMemoryContext

Interface provides a context for operating memory. It supports basic methods, but if memory wants to
support more functionality, this interface should be extended by plugin programmer and he should then
make it public, in order to plugins have access to it.

The context is given to plugins (compiler, CPU, devices), that are connected to the memory and they
communicate by invoking following methods.

2.1.2.1 DECLARATION

public interface IMemoryContext

implements plugins.IContext

2.1.2.2 METHODS

o addMemoryListener
public void addMemoryListener (
plugins.memory.IMemoryContext.IMemListener listener)

— Usage
* Adds the specified memory listener to receive memory events from this
memory. Memory events occur even if single cell is changed in memory. If
listener is null, no exception is thrown and no action is performed.

— Parameters
* listener - the memory listener

o clearMemory
public void clearMemory ()

— Usage
* Clears the memory.

e getDataType
public Class getDataType()

— Usage
* Get the type of transferred data. As you can see, methods read and write use
Object as the data type. This method should make the data type specific.
— Returns - data type of transferred data

Interfaces 11

o read
public Object read(int from)

— Usage
* Read one cell from a memory.
— Parameters
* from - memory position (address) of the read cell
— Returns - read cell (don’t have to be a byte, therefore its just Ob ject)

e readWord
public Object readWord (int from)

- Usage
* Read two cells from a memory at once. Implementation of return value is up to

plugin programmer (concatenation of the cells). If cells in memory are pure bytes
(java typeis e.g. short), concatenation can be realized as (in small endian):

result = (mem[from]&0xFF) | ((mem[from+1]<<8)&0XFF);
and in big endian as: result = ((mem[from]<<8)&0xFF) |
(mem[from+1] &0XFF) ;

— Parameters

* from-memory position (address) of the read cells
- Returns - two read cells

o removeMemoryListener
public void removeMemoryListener (
plugins.memory.IMemoryContext.IMemListener listener)

— Usage
* Removes the specified memory listener so that it no longer receives memory
events from this memory. Memory events occur even if single cell is changed in
memory. If listener is null, no exception is thrown and no action is performed.
— Parameters

* listener - the memory listener to be removed

e write
public void write(int to, java.lang.Object val)

— Usage
* Write one cell-size (e.g. byte) data to a cell to a memory on specified location.
— Parameters

* to - memory position (address) of the cell where data will be written
* val - data to be written

o writeWord
public void writeWord (int to, java.lang.Object val)

12 Package plugins.memory

— Usage
* Write two cell-size (e.g. word or two bytes) data to a cell to a memory on
specified location. Implementation of data value is up to plugin programmer
(concatenation of the cells) and have to be understandable by memory.

— Parameters

* to - memory position (address) of the read cells
x val - two cells in one Object value

2.1.3 INTERFACE IMemoryContext.IMemListener

The listener interface for receiving memory events. The class that is interested in processing a memory
event implements this interface, and the object created with that class is registered with a memory, using
the memory’s addMemoryListener method. Memory events occur even if single cell is changed in
memory and then is invoked memChange method.

2.1.3.1 DECLARATION

public static interface IMemoryContext.IMemListener

implements java.util. EventListener

2.1.3.2 METHODS

o memChange
public void memChange (java.util.EventObject evt, int adr)

— Usage
* This method is invoked when memory event is occurred - when a single cell is
changed.
— Parameters

* evt - event object
* adr - memory position (address) of changed cell

Package plugins.cpu

Package Contents Page
Interfaces
LCPU .. 14
Interface that covers CPU.
ICPUCoONteXt. 19
Basic interface for CPU context.
ICPUContext.JCPULIStener i 20
The listener interface for receiving CPU events.
IDebugColumn 21

Interface that holds information about column in debug window.

14 Package plugins.cpu

3.1 Interfaces

3.1.1 INTERFACE ICPU

Interface that covers CPU. This is the main interface that CPU plugin has to implement.

3.1.1.1 DECLARATION

public interface ICPU
implements plugins.IPlugin

3.1.1.2 FIELDS

public static final int STATE_STOPPED_NORMAL
- CPU is stopped (naturally or by user) and should not be run until its reset.

public static final int STATE_STOPPED_BREAK
— CPU is in breakpoint state (paused).

public static final int STATE_STOPPED_ADDR_FALLOUT

- CPU is stopped because of address fallout error. It should not be run until its reset.

public static final int STATE_STOPPED_BAD_INSTR

— CPU is stopped because of instruction fallout (unknown instruction) error. It should
not be run until its reset.

public static final int STATE_RUNNING
— CPU is running.

3.1.1.3 METHODS

e execute
public void execute()

— Usage

Interfaces 15

* Runs CPU emulation. Change state of CPU to “running” and start instruction
fetch/decode/execute loop. Best for this purpose is to create a separate thread
that runs permanently and protect emulator from “freeze”, the cause of started
instruction execution loop. It should be possible to control the thread in future
by other methods: pause () and stop (). Therefore after CPU’s run the
execution should return from this method. It can be assumed that while CPU is
in run state, main module won't allow to call method step ().

In CPU run state (a good CPU) performs right timing for instructions. Debug
window isn’t updated after execution of each instruction, so execution loop
should be faster as it is by calling st ep method.

e getBreakpoint
public boolean getBreakpoint(int pos)

— Usage
* Determine breakpoint on specified address. It should be called only if
breakpoints are supported (i sBreakpointSupported ()), otherwise the
method should return false always.
— Parameters
* pos - memory position (address), from where we try to determine breakpoint
— Returns - true if breakpoint exists on specified address, false otherwise

o getContext
public ICPUContext getContext()

— Usage

* Get CPU context. CPU context is an object that implements basic ICPUContext
interface. Often this interface is extended by another (not supported by this
library), a concrete context for concrete CPU and gives more functionality than
basic one. Context is a place, where plugin programmer should implement
unsupported, but needed methods and then he should make public its interface.
Plugins connected to CPU get its context as a parameter in plugin connection
process, so they can (and should do it in that way) identify the (CPU context)
interface and other context information, such as ID or version. After this
recognize process plugins recognize (or do not recognize) supported CPU they
can be connected with.

- Returns - CPU context object

o getDebugColumns
public IDebugColumn getDebugColumns()

— Usage
* Gets columns in debug window. These columns will be used in the list in the

debug window. Usually CPU uses these columns: “breakpoint”, “address”,
“mnemonics” and “opcode”.

16 Package plugins.cpu

— Returns - debug columns array

o getDebugValue
public Object getDebugValue(int row, int col)

— Usage
* Gets the value of a cell in debug window on specified position.
— Parameters

* row - cell’s index from memory position 0 (not row in debug table)
% col - column of the cell in in debug window table

— Returns - value of the cell

o getlnstrPosition
public int getInstrPosition ()

— Usage
* Get actual instruction position (before its execution). Can be said, that this
method should return PC (program counter) register (if CPU has one).
— Returns - memory position (address) of next instruction

o getInstrPosition
public int getInstrPosition(int pos)

- Usage
* Method compute address of an instruction that follows after instruction defined
by given address. Main module uses this method to determine on which
address should start next instruction in debug window. Several calls of this
method make possible to create a list of instructions that begin on arbitrary
address (debug window table).

— Parameters
* pos - memory position (address) of an instruction
— Returns - address of an instruction followed by specified address

o getStatusGUI
public JPanel getStatusGUI()

— Usage
* Gets CPU GUI panel. Each CPU plugin should have GUI panel that shows some
important CPU status (e.g. registers, flags, run state, etc.) and allow to user
perform some settings (e.g. set the frequency, etc.). This panel is located on right
side in panel “emulation” in main module. CPU plugin should update the panel
immediately after CPU state changes somehow.

— Returns - status GUI panel (instance object)

Interfaces 17

e initialize
public boolean initialize (plugins.memory.IMemoryContext mem,
plugins.ISettingsHandler sHandler)

— Usage
* Perform initialization of CPU. This method is called after compiler successful
initialization. Initialization process of CPU can be various, e.g. check for
memory type, retrieve some settings from configuration file, etc.
— Parameters
* mem - memory context that this CPU should use. If CPU and memory aren’t
connected in abstract scheme, this will be nul1l. Plugin should therefore check
this variable and in the case of null memory and if CPU can’t work without

memory, plugin should display error message and then return false.
* sHandler - settings handler object. CPU can use this for

accessing/storing/removing its settings.
— Returns - true if initialization was successful, false otherwise

e isBreakpointSupported
public boolean isBreakpointSupported ()

— Usage
* Determine whether breakpoints are supported by CPU.
— Returns - true if breakpoints are supported, false otherwise

e pause
public void pause()

— Usage
* Pauses the CPU emulation. If a thread was used for CPU execution and is
running, then it should be stopped (destroyed) but the CPU state has to be
saved for future run. CPU changes it state to "breakpoint”.

e reset
public void reset(int startAddress)

— Usage
* Perform reset of the CPU with specific starting address. This is used when
program starting address is known. Otherwise it is used standard
Plugin.reset () method

— Parameters

* startAddress -

e setBreakpoint
public void setBreakpoint(int pos, boolean set)

18 Package plugins.cpu

— Usage
* Set/unset a breakpoint to specified memory position (address). It should be
called only if breakpoints are supported (i sBreakpointSupported()).
— Parameters

* pos - memory address where breakpoint should be set/unset
* set - true if breakpoint should be set, false otherwise

o setDebugValue
public void setDebugValue(int row, int col, java.lang.Object
value)

— Usage
* Called when user sets a value to a cell in debug window. This method should
ensure proper changes in CPU’s internal state, caused by this set. The main
module calls this method only if the cell in debug window is editable by user
(IDebugColumn.isEditable ()).
- Parameters
* row - cell’s index from memory position 0 (not row in debug table)

* col - column of the cell in debug window table
* value - new value of the cell

o setlnstrPosition
public boolean setInstrPosition(int pos)

— Usage
* Set new actual instruction position (that will be executed as next). It can be said,
that a parameter represents new value of PC (program counter), if CPU has one.
Otherwise CPU should interpret the position in the right manner.
This method is called by main module when user perform “jump to address”
operation.

— Parameters
* pos - new address of actual instruction
— Returns - true if operation was successful, false otherwise

e step
public void step()

— Usage
* Perform one step of CPU emulation. It means that one instruction should be
executed. CPU state changes to state “running”, then it executes one instruction,
and then it should return to state “breakpoint” or ”stopped”. Correct timing of
executed instruction isn’t so important.

e stop
public void stop()

Interfaces 19

- Usage
* Stops the CPU emulation. If a thread was used for CPU execution and is
running, then it should be stopped (destroyed) but the CPU state can be saved.
CPU changes its state to “stopped” and main module should now forbid
execution any of methods step (), pause (), execute () until user resets the
CPU. Debug window in main module should be updated with saved CPU state.

3.1.2 INTERFACE ICPUContext

Basic interface for CPU context. The context is used by plugins, that are connected to CPU.

CPU plugins can extend this interface to their own (with some new methods) and then the programmer
should make it to be public in order to other plugins could have access to it.

Extended context may have methods for e.g. connecting devices to CPU, interrupts implementation, etc.

3.1.2.1 DECLARATION

public interface ICPUContext
implements plugins.IContext

3.1.2.2 METHODS

e addCPUListener
public void addCPUListener (plugins.cpu.ICPUContext.ICPUListener
listener)

- Usage
* Adds the specified CPU listener to receive CPU events from this CPU. CPU
events occur when CPU changes its state, or run state. CPU state events don’t
occur if CPU is running, only happens with run state changes. If listener is
null, no exception is thrown and no action is performed.

— Parameters
*+ listener - the CPU listener

o removeCPUListener
public void removeCPUListener (plugins.cpu.ICPUContext.ICPUListener
listener)

— Usage

20 Package plugins.cpu

* Removes the specified CPU listener so that it no longer receives CPU events
from this CPU. CPU events occur when CPU changes its state, or run state. CPU
state events don’t occur if CPU is running, only happens with run state changes.
If listener is null, no exception is thrown and no action is performed.

— Parameters
* listener - the CPU listener to be removed

3.1.3 INTERFACE ICPUContext.ICPUListener

The listener interface for receiving CPU events. The class that is interested in processing a CPU event
implements this interface, and the object created with that class is registered with a CPU, using the
CPU’s addCPUListener method. When the CPU event occurs, that:

e if the event is CPU’s state change, then object’s stateUpdated () method is invoked.
o if the event is CPU’s run state change, then object’s runChanged () method is invoked.

3.1.3.1 DECLARATION

public static interface ICPUContext.ICPUListener
implements java.util. EventListener

3.1.3.2 METHODS

o runChanged
public void runChanged(java.util.EventObject evt, int runState)

— Usage
* Invoked when an CPU’s run state changes.
— Parameters

% evt - event object
* runState - new run state of the CPU

o stateUpdated
public void stateUpdated (java.util.EventObject evt)

— Usage
* Invoked when an CPU’s state changes. The state can be register change, flags
change, or other CPU’s internal state change.
— Parameters
* evt - event object

Interfaces 21

3.1.4 INTERFACE IDebugColumn

Interface that holds information about column in debug window.

3.14.1 DECLARATION

public interface IDebugColumn

3.1.4.2 METHODS

o getName
public String getName()

— Usage
x Gets name (title) of the column.
— Returns - title of this column

o getType
public Class getType()
— Usage
* Gets java type of the column. Mostly the column type is java.lang.String,
but for breakpoint columns should be used java.lang.Boolean class.
— Returns - Java type of this column

e isEditable
public boolean isEditable()

— Usage
* Determines whether this column is editable by user. For example, mnemonics
column shouldn’t be editable (if CPU doesn’t support assembly in runtime), but
breakpoint cells should. If the column is editable, main module after editing the
corresponding cell invokes ICPU. setDebugValue method and this method
should take care of internal change in CPU.

— Returns - true if column (with all its cells) is editable, false otherwise

Package plugins.compiler

Package Contents Page
Interfaces
ICompiler. 23
This interface is the core for compiler plugin types.
ILeXer ..o 25
Interface that implements lexical analyzer
IMessageReporter. 26
Interface for reporting messages while running compilation process.
IToken 27

Interface that identifies a token.

Interfaces 23

4.1 Interfaces

4.1.1 INTERFACE ICompiler
L]
This interface is the core for compiler plugin types. These plugins should implement this interface once

and only once.

4.1.1.1 DECLARATION

public interface ICompiler

implements plugins.IPlugin

4.1.1.2 METHODS

e compile
public boolean compile(java.lang.String fileName, java.io.Reader
in)
— Usage
* Compile a file into output file. Output file name the compiler should derive
from input file name.
— Parameters

* fileName - name of input file (source code)
* in - Reader object of the document - source code.

— Returns - true if compile was successful, false otherwise

e compile
public boolean compile(java.lang.String fileName, java.io.Reader
in, plugins.memory.IMemoryContext mem)

— Usage
* Compile a file into output file and into an operating memory. Output file name
the compiler should derive from input file name.
— Parameters

* fileName - name of input file (source code)
* in - Reader object of the document - source code.
* mem - memory context object - it is used if compiler compiles the source into

memory. Compiler should check this parameter for null.
— Returns - true if compile was successful, false otherwise

24 Package plugins.compiler

o getLexer
public ILexer getLexer(java.io.Reader in)

— Usage
* Get a lexical analyzer of the compiler. It is used by main module for syntax
highlighting and of course in compile process by the compiler. For every call it
should return new object (instance).
— Parameters
* in - Reader object of the document - source code.
— Returns - lexical analyzer object

o getProgramStartAddress
public int getProgramStartAddress ()

— Usage
* Gets starting address of compiled source. It is (or can be) called only after
compilation process. It should return the first occurrence of compiled program.
The word ”address” can be replaced by a term ”offset from 0”. One step in
address has size of one byte. It means that return value should not be related to
operating memory units and should not deliberate techniques used in operating
memory, e.g. banking.

— Returns - address of program’s first occurrence

e initialize
public boolean initialize (plugins.ISettingsHandler sHandler,
plugins.compiler.IMessageReporter reporter)

— Usage
* Perform initialization process of a compiler. This method is called immediately
after plugins are loaded into memory.
— Parameters
* sHandler - settings handler object. Compiler can use this for

accessing/storing/removing its settings.
* reporter - object for reporting messages (warnings, errors, ...). This object is

implemented in main module and is connected to text area in panel “source
code” in the main module. Plugin should use this.

— Returns - true if initialization was successful, false otherwise

Interfaces 25

4.1.2 INTERFACE ILexer

Interface that implements lexical analyzer

4.1.2.1 DECLARATION

public interface ILexer

4.1.2.2 METHODS

o getSymbol
public IToken getSymbol ()

— Usage
* Gets next lexical symbol from source code, from actual position. This is real
implementation of lexical analyzer. After this call it should increase internal
counters to next unread text (actual position, actual row, column, etc.)

— Returns - next found token

e reset
public void reset()

— Usage
* Performs reset of the analyzer. Internal counters (actual position, actual column,
row, etc.) should be cleared. Lexical analyzer should prepare itself for start from
beginning of the document.

o reset
public void reset(java.io.Reader in, int yyline, int yychar, int
yycolumn)
— Usage
* Performs reset of the analyzer. Internal counters (actual position, actual column,
row, etc.) should be cleared. Lexical analyzer should prepare itself for start from
beginning of the document.
— Parameters

in - Reader object of the document - source code.

yyline - from this line should lexical analyser start, usually 0
yychar - from this char should lexical analyser start, usually 0
yycolumn - from this column should lexical analyser start, usually 0

* % K K

26 Package plugins.compiler

4.1.3 INTERFACE IMessageReporter

Interface for reporting messages while running compilation process. It is used for sending compiling
messages to main module, e.g. warnings, errors, etc. These messages are showed in bottom text area in
panel “source code” in the main module.

4.1.3.1 DECLARATION

public interface IMessageReporter

4.1.3.2 FIELDS

e public static final int TYPE_ZWARNING

e public static final int TYPE_ERROR

e public static final int TYPE_INFO

4.1.3.3 METHODS

e report
public void report(int row, int column, java.lang.String
message, int type)

— Usage
* Method reports some message to a main module with location information.
— Parameters

* row - row in the source code that is related to the message

* column - column in the source code that is related to the message

* message - message to report

* type - type of the message (one of the TYPE_WARNING, TYPE_ERROR,

TYPE_INFO)

e report
public void report(java.lang.String message, int type)

Interfaces 27

— Usage
* Method reports some message to a main module.
— Parameters

* message - message to report
* type - type of the message (one of the TYPE_WARNING, TYPE_ERROR,

TYPE_INFO)

4.1.4 INTERFACE IToken

Interface that identifies a token.

4.1.4.1 DECLARATION

public interface IToken

4.1.4.2 FIELDS

e public static final int RESERVED

— Token is a reserved word.

e public static final int PREPROCESSOR

— Token is a preprocessor keyword.

e public static final int REGISTER
- Token is a CPU register.

e public static final int SEPARATOR

— Token is a separator (e.g.”’, tab, "1, ...).
e public static final int OPERATOR

- Token is a operator (e.g. +,-, %, /, ...).
e public static final int COMMENT

— Token is a comment. Most assemblers used semicolon (”;”) as start of a comment.

e public static final int LITERAL

— Token is a literal (e.g. number, string, char, ...).

e public static final int IDENTIFIER

28 Package plugins.compiler

— Token is an identifier (e.g. name of variable, name of macro...).

e public static final int LABEL

— Token is an label identifier.

e public static final int ERROR

— Token is of unknown type.

e public static final int TEOF

— Token represents end-of-file. This token should be the last found token.

4.1.4.3 METHODS

o getColumn
public int getColumn ()

— Usage
* Gets 0-based column number of start of the token.
— Returns - start column number of the token

o getErrorString
public String getErrorString()

— Usage
* Gets error string for this token. If the token is not errorneous, return empty
string ().

— Returns - error string message for this token

o getID
public int getID()

— Usage
* Gets ID of the token. ID should be used for identifying not the type of the token
(e.g. reserved word, etc.) but for concrete token of given token type got from
getType () method. E.g. “mvi” is concrete token of type RESERVED and this
method should return ID for “mvi” token. This is primary method for
identifying tokens.
- Returns - ID of the token

o getLength
public int getLength ()

- Usage
* Gets length of the token.

Interfaces 29

— Returns - length of the token

o getLine
public int getLine()

— Usage
x Gets 0-based line (row) number of start of the token.
— Returns - start line number of the token

o getOffset
public int getOffset()

— Usage
* Gets 0-based offset from the start of the token.
— Returns - starting offset of the token in the source code

o getlext
public String getText()

— Usage
* Gets textual representation of this token (token value).
— Returns - token value

o getType
public int getType()
- Usage
* Gets type of the token. Type is represented by pre-defined constants in this
interface (e.g. reserved words, preprocessor, ...).
— Returns - type of the token

e islnitialLexicalState
public boolean isInitialLexicalState ()

— Usage
* Initial lexical state represents positions in source code from where lexical
analyzer can start parsing the code as it would parse from the start. Hence they
are safe positions from which syntax highlighting can be reset, too.

— Returns - true if token is in initial lexical state, false otherwise.

Package runtime

Package Contents Page
Classes
StaticDialogs 31

This class offers static methods that show some messages on the screen.

Classes 31

5.1 Classes

5.1.1 CLASs StaticDialogs

This class offers static methods that show some messages on the screen. Plugins should use these
methods for displaying messages. Example of use: StaticDialogs.showMessage (“Hello,

world!”);

5.1.1.1 DECLARATION

public class StaticDialogs

extends java.lang.Object

5.1.1.2 CONSTRUCTORS

e StaticDialogs
public StaticDialogs ()

5.1.1.3 METHODS

o getModelMinor
public static int getModelMinor ()

— Usage
* Get communication model minor version number. It's a part of its identification
for plugins. Plugins can identify the model and if they are not compatible with
it, they can raise an error.

— Returns - minor version number

o getModelVersion
public static int getModelVersion ()

— Usage
* Get communication model version number. It’s a part of its identification for
plugins. Plugins can identify the model and if they are not compatible with it,
they can raise an error.

— Returns - major version number

32 Package runtime

o showErrorMessage
public static void showErrorMessage (java.lang.String message)

— Usage
* Show error message as JOpt ionPane dialog. Title will be “Error”.
— Parameters

* message - error message to show

o showMessage
public static void showMessage (java.lang.String message)

— Usage

* Show information message as JOpt ionPane dialog. Title will be "Message”.
— Parameters

* message - information message to show

Package plugins.device

Package Contents Page
Interfaces
IDevVice. . .. 34
Main interface that has to be implemented by device plugin.
IDeviceContext. e 35

Interface for basic context of the device.

34 Package plugins.device

6.1 Interfaces

6.1.1 INTERFACE IDevice

Main interface that has to be implemented by device plugin.

Design of the interface supports hierarchical connection of devices. Devices identifies each other by
context methods getID (), and getHash () . The connection request can be accepted or rejected if
attaching device is/isn’t supported. Devices that don’t support any connection hierarchy, invoking their
attachDevice () method, always return true.

6.1.1.1 DECLARATION

public interface IDevice

implements plugins.IPlugin

6.1.1.2 METHODS

e attachDevice
public boolean attachDevice (plugins.device.IDeviceContext male)

— Usage
x Perform a connection of two devices. Male is a context of another device (that
want to be connected into this one). Method should carefully check if male can
be connected to this device, by recognizing its context. This is the only way how
to ensure correctness of the connection.

— Parameters
* male - male-plug device context
— Returns - true if connection process was successful, false otherwise

o detachAll
public void detachAll()

— Usage
* Detach all devices from this device. This method is invoked by main module in
application closing process.

o getNextContext
public IDeviceContext getNextContext()

— Usage

Interfaces 35

x Get next context of this device. The device can have more than one context. In
connection process, the main module asks for next device context for each
connection case. If the device has only one context, it should return only this
context for each call of this method.

— Returns - next device context

e initialize
public boolean initialize (plugins.cpu.ICPUContext cpu,
plugins.memory.IMemoryContext mem, plugins.ISettingsHandler
sHandler)

- Usage
* Perform initialization process of this device. It is called by main module after
successful initialization of compiler, CPU and memory. Device should initialize
itself besides other things also in a way of checking supported CPU and memory.

— Parameters

* cpu - context of a CPU. Device should check this for extended context. Will be

null if a device is not connected to CPU.
* mem - context of a memory. Device should check this for extended context. Will

be null if a device is not connected to memory.
* sHandler - settings handler object. Device can use this for

accessing/storing/removing its settings.
— Returns - true if initialization process was successful

e showGUI
public void showGUI()

— Usage
* Shows GUI of a device. Device don’t have to have a GUI, but instead it should
display information message.

6.1.2 INTERFACE IDeviceContext

Interface for basic context of the device. If device support more functionality than input or output, it
should be extended (or implemented by an abstract class), and then make public.

6.1.2.1 DECLARATION

public interface IDeviceContext
implements plugins.IContext, java.util. EventListener

36 Package plugins.device

6.1.2.2 METHODS

e getDataType
public Class getDataType()

— Usage
* Get the type of transferred data. As you can see, methods in and out use
Object as the data type. This method should make the data type specific.
— Returns - data type of transferred data

o in
public Object in(java.util.EventObject evt)
— Usage
* Perform "IN” operation, it reads data from this device. The device should return

one byte of its input data. I/O operations are considered as events that occurred
to this device.

— Parameters
* evt - event object
— Returns - input data read from device

e out
public void out(java.util.EventObject evt, java.lang.Object val
)

— Usage
* Perform "OUT” operation, it writes a data to this device. The device should
accept one byte of the data that parameter val offers. I/O operations are
considered as events that occurred to this device.

— Parameters

* evt - event object
* val - data to be written to a device

